Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

In order to solve this question we need to use the principle of conservation of momentum which states:

The momentum in a closed system remains constant before and after a collision or explosion.

I.E.

momentum before=momentum after

And ingeneral momentum is calculated using: P=mv where P is the momentum, m is the mass of the object, and v is the velocity of the object.

Hence the total momentum before the collision is:

P1+P2

=m x 2v + 3m x -v       NOTE: notice the negative v on the second truck as it is moving in the opposite direction to the first truck

=-mv

After the collision the the trucks stick together so the total mass becomes 4m and the combined trucks move at an unknown speed of v​after

We will solve the equation for conservation of momentum to determine vafter​:

mv=4mvafter

cancelling out the m's:

v=4vafter

and rearranging to make v​after the subject of the equation:

vafter​=0.25v

Which is our final answer.

SW
Answered by Sarah W. Physics tutor

33606 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.


Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.


How might you use sound waves to smash a glass? What are other examples of resonance in everyday life?


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences