Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

In order to solve this question we need to use the principle of conservation of momentum which states:

The momentum in a closed system remains constant before and after a collision or explosion.

I.E.

momentum before=momentum after

And ingeneral momentum is calculated using: P=mv where P is the momentum, m is the mass of the object, and v is the velocity of the object.

Hence the total momentum before the collision is:

P1+P2

=m x 2v + 3m x -v       NOTE: notice the negative v on the second truck as it is moving in the opposite direction to the first truck

=-mv

After the collision the the trucks stick together so the total mass becomes 4m and the combined trucks move at an unknown speed of v​after

We will solve the equation for conservation of momentum to determine vafter​:

mv=4mvafter

cancelling out the m's:

v=4vafter

and rearranging to make v​after the subject of the equation:

vafter​=0.25v

Which is our final answer.

SW
Answered by Sarah W. Physics tutor

34680 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can the average speedx of a gas molecule be derived?


Calculate the frequency of a simple pendulum of length 950 mm. Give answer to an appropriate number of significant figures.


How many joules of heat energy are required to raise the temperature of 10kg of water from 22⁰C to 27⁰C? (The Specific Heat Capacity of water is 4200 Jkg^-1⁰C^-1)


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning