Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

In order to solve this question we need to use the principle of conservation of momentum which states:

The momentum in a closed system remains constant before and after a collision or explosion.

I.E.

momentum before=momentum after

And ingeneral momentum is calculated using: P=mv where P is the momentum, m is the mass of the object, and v is the velocity of the object.

Hence the total momentum before the collision is:

P1+P2

=m x 2v + 3m x -v       NOTE: notice the negative v on the second truck as it is moving in the opposite direction to the first truck

=-mv

After the collision the the trucks stick together so the total mass becomes 4m and the combined trucks move at an unknown speed of v​after

We will solve the equation for conservation of momentum to determine vafter​:

mv=4mvafter

cancelling out the m's:

v=4vafter

and rearranging to make v​after the subject of the equation:

vafter​=0.25v

Which is our final answer.

SW
Answered by Sarah W. Physics tutor

33723 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


State what is meant by isotopes?


What is the total energy of a spaceship of mass m, orbiting a planet of mass M in a circular orbit with radius r? The ship and the planet are taken to be an isolated system.


A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences