Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

In order to solve this question we need to use the principle of conservation of momentum which states:

The momentum in a closed system remains constant before and after a collision or explosion.

I.E.

momentum before=momentum after

And ingeneral momentum is calculated using: P=mv where P is the momentum, m is the mass of the object, and v is the velocity of the object.

Hence the total momentum before the collision is:

P1+P2

=m x 2v + 3m x -v       NOTE: notice the negative v on the second truck as it is moving in the opposite direction to the first truck

=-mv

After the collision the the trucks stick together so the total mass becomes 4m and the combined trucks move at an unknown speed of v​after

We will solve the equation for conservation of momentum to determine vafter​:

mv=4mvafter

cancelling out the m's:

v=4vafter

and rearranging to make v​after the subject of the equation:

vafter​=0.25v

Which is our final answer.

SW
Answered by Sarah W. Physics tutor

33891 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A bungee jumper of mass 160kg falls from a cliff. The bungee cord has a natural length of 5.0m and a stiffness constant of 3.0N/m. The air resistance is a constant force of 4.0N, what's the speed of the jumper when the total length of cord is 5.9m?


Why do I keep losing marks on 6 markers?


A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences