The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi

Tangent is parallel, therefore (dy/dx)=0.

Find y:

y = r sin(x) = 3a(1 + cos(x))(sin(x))

Differentiate y with respect to x

dy/dx = 3a[(2cos(x) - 1)(cos(x) + 1)] 

= 0

Solve equation

2cos(x)- 1 = 0

cos(x) = 1/2

x = pi/3

Therefore r = 3a(1 + cos(pi/3))

a = 9a/2

A: (9a/2, pi/3)

SS
Answered by Salah S. Further Mathematics tutor

6702 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you calculate the cross product of two vectors?


Given that the quadratic equation x^2 + 7x + 13 = 0 has roots a and b, find the value of a+b and ab.


Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


Differentiate w.r.t x the expression arccos(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences