The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi

Tangent is parallel, therefore (dy/dx)=0.

Find y:

y = r sin(x) = 3a(1 + cos(x))(sin(x))

Differentiate y with respect to x

dy/dx = 3a[(2cos(x) - 1)(cos(x) + 1)] 

= 0

Solve equation

2cos(x)- 1 = 0

cos(x) = 1/2

x = pi/3

Therefore r = 3a(1 + cos(pi/3))

a = 9a/2

A: (9a/2, pi/3)

SS
Answered by Salah S. Further Mathematics tutor

6814 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve has the equation (5-4x)/(1+x)


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning