Why does water stay in the bucket if it is swung through a loop fast enough?

Water stays in the bucket for the same reasons that we stay in our seats when we do a loop on a rollercoaster. Another example is being driven round a roundabout and feeling a 'force' pushing you outwards away from the roundabout. 

The cause of this 'force' is known as inertia- which is given by Newton's First Law of Motion: objects will remain at rest or at constant velocity unless acted on by an external force. 

As we swing the bucket through the loop, the water experiences a downward force due to gravity, which is accelerating the bucket's contents down towards the ground. 

However, the water also has another force acting on it. The sides of the bucket push on the water and cause it to have another acceleration, tangential to the circle the bucket is being swung through. Therefore, at the top of the swing, the water feels a downward force towards the ground (due to gravity) and a sideways force perpendicular to the ground (due to the bucket walls). The resultant of these two forces is a diagonal force, accelerating the water down and along. Thus, the water falls diagonally, where it is caught by the bucket again as it moves through the circle and remains in the bucket!  

Answered by Bethany B. Physics tutor

7073 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A body is moving at 70km/h and has a mass of 130kg, calculate its maximum kinetic energy.


What is the Centripetal force, and how does it keep objects in circular motion?


What is the difference between a scalar and a vector?


What is the minimum initial velocity necessary for an object to leave Earth?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy