Explain how pH changes can be minimised using a mixture of a weak acid and it's conjugate base

This mixture of a weak acid (HA) and it's conjugate base (A-) acts as a buffer. A buffer is a solution with a highly stable pH. On addition of small amounts of either a strong acid or a strong base, this buffer will resist changes in pH.

Before addition:
The acid and it's conjugate base may react with each other, but this will result in no net change as both acid and base are reformed in the reaction. 

HA + A--> A+ HA

Both the acid and it's conjugate base are weak so rarely react with the water present. 

As a result of both of these, the weak acid and it's conjugate base will remain in high concentration in the solution.

On addition of strong base:
As the base added is strong, it will react with the weak acid. The equation below demonstrates how the Hfrom the weak acid is donated to the -OH group from the base. 

 -OH + HA --> A+ H2O

As the -OH group is used up by the reaction, the pH will only change minimally.

On addition of strong acid:
The Hfrom the strong acid will react with the weak base to form the weak acid HA. 

H+ + A-  --> HA

The additional H+ contributed by adding the strong acid is mopped up by the weak base. Therefore the pH will only change minimally

CT
Answered by Cora T. Chemistry tutor

4115 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Flask Q (volume = 1.00 x 103 cm3 ) is filled with ammonia (NH3) at 102 kPa and 300 K. The tap is closed and there is a vacuum in flask P. (Gas constant R = 8.31 J K−1 mol−1 ) Calculate the mass of ammonia


Calculate the pH of the solution formed when 30 cm3 of 0.150 moldm-3 aqueous sulfuric acid is added to 30 cm3 of 0.200 moldm-3 aqueous potassium hydroxide at 25 C.


Why can both major and minor products be formed during an eimination reaction?


Explain why the first ionisation energy of strontium is less than the first ionisation energy of calcium


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences