Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.

We don't know what type of a triangle we're considering here. Therefore the universal and quickest solution to the first problem is use of the cosine rule, which states that for a triangle with sides a,b and c and the angle θ between sides “a” and “b”:c2=a2+b2-2abcos(θ) To find the area of the triangle we should use the formula: A=1/2absin(θ)

SK
Answered by Szymon K. Further Mathematics tutor

7413 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning