Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.

We don't know what type of a triangle we're considering here. Therefore the universal and quickest solution to the first problem is use of the cosine rule, which states that for a triangle with sides a,b and c and the angle θ between sides “a” and “b”:c2=a2+b2-2abcos(θ) To find the area of the triangle we should use the formula: A=1/2absin(θ)

SK
Answered by Szymon K. Further Mathematics tutor

6854 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


How can a system of two linear equations be solved?


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


To differentiate a simple equation: y= 4x^3 + 7x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences