Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.

We don't know what type of a triangle we're considering here. Therefore the universal and quickest solution to the first problem is use of the cosine rule, which states that for a triangle with sides a,b and c and the angle θ between sides “a” and “b”:c2=a2+b2-2abcos(θ) To find the area of the triangle we should use the formula: A=1/2absin(θ)

SK
Answered by Szymon K. Further Mathematics tutor

7237 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Find any stationary points in the function f(x) = 3x^2 + 2x


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


Find the stationary points of y=x^3 + 3x^2 - 9x - 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning