MYTUTOR SUBJECT ANSWERS

327 views

How do I do a proof by induction?

For this explanation we will use the following example from a 2013 exam paper:

   If u1= 2 and un+1=(5un-3)/(3un-1), then prove that un=(3n+1)/(3n-1) for all n>=1

The first step of any proof by induction is to make the assumption that what we want to prove is true for a particular value n = k:

  Assume there exists k such that uk=(3k+1)/(3k-1)

We must then prove that it is also true for n = (k+1), we start by finding uk+1 using the original formula:

  uk+1 = (5uk-3)/(3uk-1) = (5*(3k+1)/(3k-1) - 3)/(3*(3k+1)/(3k-1) - 1) = ... = (3k+4)/(3k+2)

We now want to write this in terms of k+1, in this case it is fairly straightforward but other times it may be harder to see:

  uk+1 = (3k+4)/(3k+2) = (3(k+1) - 3 + 4)/(3(k+1) - 3 +2) = (3(k+1)+1)/(3(k+1)-1)

When written in terms of k+1, uk+1 should now be in the form that we want to prove for unor a form that can be rearranged into that one. There is still one step left however which is CRUCIAL for this to be a proper proof by induction. We have to prove this is true for a certain value of n, in this case n = 1:

   u= 2 = (3*1+1)/(3*1-1) therefore the assumption is true for n = 1. It is therefore true for n = 1, 2, 3, ...

This last step is usually very simple but can often be overlooked so make sure to include it!

Samuel C. A Level Physics tutor, A Level Maths tutor, A Level Further...

2 years ago

Answered by Samuel, an A Level Further Mathematics tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist

68 SUBJECT SPECIALISTS

£20 /hr

Peter H.

Degree: Mathematics (Bachelors) - Durham University

Subjects offered: Further Mathematics , Physics+ 2 more

Further Mathematics
Physics
Maths
.STEP.

“About me: I am a Mathematics student at Durham University, and I am currently in my 3rd year. I would very much like to give assistance and help students of all abilities to reach the goals they aspire to in Maths and Physics, whether...”

MyTutor guarantee

£20 /hr

Guy P.

Degree: Mathematics (Masters) - Warwick University

Subjects offered: Further Mathematics , Maths+ 2 more

Further Mathematics
Maths
.STEP.
.MAT.

“About:Hi. I am a 2nd Year Mathematics student at the University of Warwick. I achieved a comfortable First in Year 1 and have continued this trend into my second year. Even from an early age, I have had a burning passion to engage m...”

£20 /hr

Tadas T.

Degree: MMathPhil Mathematics and Philosophy (Bachelors) - Oxford, St Anne's College University

Subjects offered: Further Mathematics , Philosophy and Ethics+ 5 more

Further Mathematics
Philosophy and Ethics
Maths
.MAT.
-Personal Statements-
-Oxbridge Preparation-

“Currently I am a third year Maths and Philosophy student at the University of Oxford. I have been interested in both Maths and Philosophy for quite a long time now and I hope I can pass both the interest and knowledge for the subject(...”

About the author

Samuel C.

Currently unavailable: for regular students

Degree: Physics (Bachelors) - Durham University

Subjects offered: Further Mathematics , Science+ 3 more

Further Mathematics
Science
Physics
Maths
Chemistry

“Hi, I'm Sam Crawford. I'm studying Maths and Physics at Durham University and I absolutely love both subjects.”

You may also like...

Posts by Samuel

How do I do a proof by induction?

How do I find the integral ∫(ln(x))^2dx ?

Other A Level Further Mathematics questions

The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n

Express cos(4x) in terms of powers of cos(x)

What modules have you done before?

View A Level Further Mathematics tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok