Resolving the forces for an object suspended on two strings.

Imagine a following situation: a stationary (not moving) object with a mass of 5 kg is suspended in the air by two strings. The angles between strings and the vertical directions are 15 and 55 degrees. What are tensions T1 and T2 in both strings?The first thing to do would be just drawing a simple diagram. I don't think it's possible to add one here, but I drew a little diagram myself! Now, we have to resolve the forces in the horizontal and vertical directions. Because the object is stationary, according to Newton's laws of dynamics we know that adding all the forces will equal 0. Let's start!Vertical forces: we have two vertical components of tension T1 and T2 pointing upwards (call it +ve direction) and weight i.e. 5g pointing downwards (let's take g = 9.8). So: T1cos(15o) + T2cos(55o) - 59.8 = 0  (eqn. 1)Horizontal forces: one component points to the left (-ve direction), the other to the right (+ve direction). Hence: T1sin(15o) - T2sin(55o) = 0  (eqn. 2)We can see equations 1 and 2 form a set of simultaneous equations. Let's rearrange 2 to get T1 in terms of T2: T1 = T2sin(55o) / sin(15o)  (eqn. 3).Substituting equation 3 into equation 1 gives: T2sin(55o)*cot(15o) + T2cos(55o) = 49  (eqn. 4) .From equation 4: T2 = 13.5 N and hence from equation 3: T1 = 42.7 N.

FW
Answered by Filip W. Physics tutor

19002 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


What is the total capacitance of a circuit containing a 3microfarad capacitor and a 2microfarad capacitor in series.


How come nuclei become more unstable the bigger they are?


Derive an expression for wave speed in terms of wavelength and frequency.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning