Resolving the forces for an object suspended on two strings.

Imagine a following situation: a stationary (not moving) object with a mass of 5 kg is suspended in the air by two strings. The angles between strings and the vertical directions are 15 and 55 degrees. What are tensions T1 and T2 in both strings?The first thing to do would be just drawing a simple diagram. I don't think it's possible to add one here, but I drew a little diagram myself! Now, we have to resolve the forces in the horizontal and vertical directions. Because the object is stationary, according to Newton's laws of dynamics we know that adding all the forces will equal 0. Let's start!Vertical forces: we have two vertical components of tension T1 and T2 pointing upwards (call it +ve direction) and weight i.e. 5g pointing downwards (let's take g = 9.8). So: T1cos(15o) + T2cos(55o) - 59.8 = 0  (eqn. 1)Horizontal forces: one component points to the left (-ve direction), the other to the right (+ve direction). Hence: T1sin(15o) - T2sin(55o) = 0  (eqn. 2)We can see equations 1 and 2 form a set of simultaneous equations. Let's rearrange 2 to get T1 in terms of T2: T1 = T2sin(55o) / sin(15o)  (eqn. 3).Substituting equation 3 into equation 1 gives: T2sin(55o)*cot(15o) + T2cos(55o) = 49  (eqn. 4) .From equation 4: T2 = 13.5 N and hence from equation 3: T1 = 42.7 N.

FW
Answered by Filip W. Physics tutor

19005 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the optimum angle to throw a snowball for maximum horizontal displacement? (Ignore air resistance, assume the snowball is thrown level with the ground. The angle is measured from the ground up)


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


How does a cyclotron work?


The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning