Resolving the forces for an object suspended on two strings.

Imagine a following situation: a stationary (not moving) object with a mass of 5 kg is suspended in the air by two strings. The angles between strings and the vertical directions are 15 and 55 degrees. What are tensions T1 and T2 in both strings?The first thing to do would be just drawing a simple diagram. I don't think it's possible to add one here, but I drew a little diagram myself! Now, we have to resolve the forces in the horizontal and vertical directions. Because the object is stationary, according to Newton's laws of dynamics we know that adding all the forces will equal 0. Let's start!Vertical forces: we have two vertical components of tension T1 and T2 pointing upwards (call it +ve direction) and weight i.e. 5g pointing downwards (let's take g = 9.8). So: T1cos(15o) + T2cos(55o) - 59.8 = 0  (eqn. 1)Horizontal forces: one component points to the left (-ve direction), the other to the right (+ve direction). Hence: T1sin(15o) - T2sin(55o) = 0  (eqn. 2)We can see equations 1 and 2 form a set of simultaneous equations. Let's rearrange 2 to get T1 in terms of T2: T1 = T2sin(55o) / sin(15o)  (eqn. 3).Substituting equation 3 into equation 1 gives: T2sin(55o)*cot(15o) + T2cos(55o) = 49  (eqn. 4) .From equation 4: T2 = 13.5 N and hence from equation 3: T1 = 42.7 N.

FW
Answered by Filip W. Physics tutor

17803 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.


What happens to the pressure inside a gas-filled ball when the temperature is increased? Explain your answer, stating the assumption made.


An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?


A car is moving along a straight horizontal road, with a constant acceleration. The car passes point A, with a speed of ums(-1). 10 seconds later, passes point B, with a speed of 45 ms(-1). The distance from A to B is 300m. Find u.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences