Resolving the forces for an object suspended on two strings.

Imagine a following situation: a stationary (not moving) object with a mass of 5 kg is suspended in the air by two strings. The angles between strings and the vertical directions are 15 and 55 degrees. What are tensions T1 and T2 in both strings?The first thing to do would be just drawing a simple diagram. I don't think it's possible to add one here, but I drew a little diagram myself! Now, we have to resolve the forces in the horizontal and vertical directions. Because the object is stationary, according to Newton's laws of dynamics we know that adding all the forces will equal 0. Let's start!Vertical forces: we have two vertical components of tension T1 and T2 pointing upwards (call it +ve direction) and weight i.e. 5g pointing downwards (let's take g = 9.8). So: T1cos(15o) + T2cos(55o) - 59.8 = 0  (eqn. 1)Horizontal forces: one component points to the left (-ve direction), the other to the right (+ve direction). Hence: T1sin(15o) - T2sin(55o) = 0  (eqn. 2)We can see equations 1 and 2 form a set of simultaneous equations. Let's rearrange 2 to get T1 in terms of T2: T1 = T2sin(55o) / sin(15o)  (eqn. 3).Substituting equation 3 into equation 1 gives: T2sin(55o)*cot(15o) + T2cos(55o) = 49  (eqn. 4) .From equation 4: T2 = 13.5 N and hence from equation 3: T1 = 42.7 N.

FW
Answered by Filip W. Physics tutor

18493 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A student is measuring the acceleration due to gravity, g. They drop a piece of card from rest, from a vertical height of 0.75m above a light gate. The light gate measures the card's speed as it passes to be 3.84 m/s. Calculate an estimate for g.


The tip of each prong of a tuning fork emitting a note of 320Hz vibrates in SHM with an amplitude of 0.50mm. What is the speed of each tip when its displacement is zero?


Explain how Maxima and Minima occur in Young's double slit experiment


Describe how a stationary wave is formed and some of its properties.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning