Finding the derivative of a polynomial.

Take any polynomial, eg/ y=x3+1/2x2-3x+9. Then dy/dx=3x,+x-3, in this case. This is because, when deriving in this sense, you take each term in x, multiply it by its index, and reduce that index by 1.

In a general sense, for y=(n0)xn+(n1)xn-1+...+(nn-1)xn-(n-1)+(nn),             dy/dx=(n)(n0)xn-1+(n-1)(n1)xn-2+...+(n-(n-1))(nn-1). Multiply the x term by the power, reduce the power by one. This works for all powers, even non-integers.

YP
Answered by Yaniv P. Further Mathematics tutor

5798 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the stationary point of 3x^2+7x


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning