Convert the general complex number z=x+iy to modulus-argument form.

Modulus-argument form implies that we should express z in terms of its straight line distance from the origin and the angle this straight line would make with the x axis. This is expressed as z = r ei*theta where r is the modulus and theta is the argument. We thus wish to express r and theta in terms of x and y.

This problem is best solved visually by considering an Argand diagram for the general complex number, z. In this way we can see that z is represented as a point x units along the x-axis and y units along the y-axis, forming a right angled triangle with the vertical and horizontal.

As with any right angled triangle, using Pythagoras, we can see that the length of the hypotenuse (I.e. the distance from the origin, the modulus) is given by r = sqrt(x2+y2). Similarly, using basic trigonometry we can also see that the angle between this line and the x axis (theta, the argument) is given by theta = arctan(y/x).

This means that in modulus-argument form:

z = sqrt(x2+y2) exp(i*arctan(y/x))

BH
Answered by Ben H. Further Mathematics tutor

11343 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Express (X²-16)/(X-1)(X+3) in partial fractions


Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning