if y = (e^x)^7 find dy/dx

To solve the the problem we need to recognize what type of differentiation technique we shall be employing

y = (ex)7

the x unction which we are diferentiating is a power of an exponential function therefore we must employ a substituion method to solve this

if u = ex

therefore y = (u)7

dy/du = 7(u)6

we can say du/dx = ex

therefore dy/dx = dy/du  * du/dx

dy/dx = 7(ex)6 * ex

dy/dx = 7(ex)6​ * ex

dy/dx = 7(ex)7​

GI
Answered by George I. Further Mathematics tutor

4409 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning