if y = (e^x)^7 find dy/dx

To solve the the problem we need to recognize what type of differentiation technique we shall be employing

y = (ex)7

the x unction which we are diferentiating is a power of an exponential function therefore we must employ a substituion method to solve this

if u = ex

therefore y = (u)7

dy/du = 7(u)6

we can say du/dx = ex

therefore dy/dx = dy/du  * du/dx

dy/dx = 7(ex)6 * ex

dy/dx = 7(ex)6​ * ex

dy/dx = 7(ex)7​

GI
Answered by George I. Further Mathematics tutor

3898 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you solve, dy/dx=(x^2+y^2)/xy?


Simplify i^{4}?


The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).


find all the roots to the equation: z^3 = 1 + i in polar form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences