How do you calculate the derivative of cos inverse x?

When differentiating cos inverse x, the typical method is to make y equal to cos inverse x.By taking cos of both sides: x = cosy.You can then differentiate with respect to y, obtaining that: (dx/dy) = - sinyUsing our knowledge of derivatives, we now know that: (dy/dx) = -1/(siny)From x = cosy, x^2 = (cosy)^2                  = 1 - (siny)^2          (siny)^2 = 1 - x^2            siny = (1-x^2)^(1/2)Combining this with the equation stating (dy/dx), we get:     (dy/dx) = (-1)/((1-x^2)^(1/2))Since y is equal to the cos inverse function, this is now equal to the derivative of cos inverse x.

WW
Answered by Will W. Further Mathematics tutor

7367 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Can you show me how to solve first order differential equations using the integrating factor method?


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning