How do you differentiate arctan(x)?

Differentiation of arctan(x), also written tan^(-1)(x), requires a little knowledge of regular trigonometric algebra and differentiation, and implicit differentiation. 

Let's set y = arctan(x) to start. Then, by the definition the arctan function, tan(y) = x. We recall the derivative of the tan function, d(tan(u))/du = (sec(u))^2.

So, if we differentiate both sides of our equation with respect to x, we find that (dy/dx)((sec(y))^2) = 1, using the rules of implicit differentiation. Now, we can rearrange our equation for dy/dx = 1/((sec(y))^2). 

Thinking about some trigonometric algebra, we know that* (sec(y))^2 = 1 + (tan(y))^2. Additionally, remember that tan(y) = x as we said earlier! Using this information, simple substitution back into our equation yields dy/dx = 1/(1+x^2).

So, d(arctan(x))/dx = 1/(1+x^2).

 

 

 

*For a reminder of where this comes from, think about the trigonometric relation: (sin(y))^2 + (cos(y))^2 = 1.

JB
Answered by Jonathan B. Further Mathematics tutor

9319 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


Solve the differential equations dx/dt=2x+y+1 and dy/dt=4x-y+1 given that when t=0 x=20 and y=60. (A2 Further pure)


In statistics, what is the benefit of taking a sample survey rather than a census?


find general solution to: x(dy/dx) + 2y = 4x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences