Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24

The procedure of mathematical induction is as following:

Firstly prove the base case is true i.e. when n=1, the statement is true.

Then assume for some integer n=k the statement is true, and then prove the case n=k+1, the statement is true.

Make a conclusion that by mathematical induction, the statement is true.

For this particular question, the base case is when n=0, the statement is true, since it is asked for 'all non-negative integers'. It is because 112x0+250+22=24 is divisible by 24 (24=24x1).

Then let's say P(n) is the proposition that 112n + 25n + 22 is divisible by 24. Assuming that P(k) is true for some integer k=n, then 112k + 25k+ 22  is divisible by 24.

The most important step comes: we then prove that P(k+1) is true. i.e. 112k+2 + 25k+1 + 22 is divisible by 24.

It is true because 112k+2 + 25k+1 + 22=121x 112k+25x25k+22=(120 + 1)112k + (24 + 1)25k + 22= (120 x112k + 24 x25k​)+ (112k + 25k+ 22). Expressions in both brackets are divisible by 24. so P(k+1) is true.

Then we are done. We could conclude that by mathematical induction the statement is true for all non-negative integers. 

XZ
Answered by Xunrui Z. Further Mathematics tutor

9349 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


How do you find the square roots of a complex number?


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


explain the eigenvalue problem


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning