Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24

The procedure of mathematical induction is as following:

Firstly prove the base case is true i.e. when n=1, the statement is true.

Then assume for some integer n=k the statement is true, and then prove the case n=k+1, the statement is true.

Make a conclusion that by mathematical induction, the statement is true.

For this particular question, the base case is when n=0, the statement is true, since it is asked for 'all non-negative integers'. It is because 112x0+250+22=24 is divisible by 24 (24=24x1).

Then let's say P(n) is the proposition that 112n + 25n + 22 is divisible by 24. Assuming that P(k) is true for some integer k=n, then 112k + 25k+ 22  is divisible by 24.

The most important step comes: we then prove that P(k+1) is true. i.e. 112k+2 + 25k+1 + 22 is divisible by 24.

It is true because 112k+2 + 25k+1 + 22=121x 112k+25x25k+22=(120 + 1)112k + (24 + 1)25k + 22= (120 x112k + 24 x25k​)+ (112k + 25k+ 22). Expressions in both brackets are divisible by 24. so P(k+1) is true.

Then we are done. We could conclude that by mathematical induction the statement is true for all non-negative integers. 

XZ
Answered by Xunrui Z. Further Mathematics tutor

9485 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given M = [[-2,6],[1,3]], find P and D such that M = PDP^(-1) where D is a diagonal matrix


The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


How do I convert cartesian coordinates into polar coordinates?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning