3x^3 -2x^2-147x+98=(ax-c)(bx+d)(bx-d). Find a, b, c, d if a, b, c, d are positive integers

(bx+d)(bx-d)=b^2x^2-d^2(ax-c)(bx+d)(bx-d)=(ax-c)(b^2x^2-d^2)=ab^2x^3-ad^2x-b^2cx^2+cd^2ab^2=3b^2c=2ad^2=147-cd^2=98From equations:a=3/b^2c=2/b^2d^2=49b^2Since a, b, c, d are positive integers, b must be 1. Then a=3, c=2, d=7

LK
Answered by Laura K. Further Mathematics tutor

6836 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If z=4+i, what is 1/z? (in the form a+bi)


Find dy/dx when y=2x^(4)+3x^(-1)


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences