Answers>Maths>IB>Article

How to integrate ∫〖3x/√(1-x^2 ) dx〗?

We will use integration by substitution to solve this integral.

Let 1-x^2=sin^2(u)

This means that:

x^2=1-sin^2(u)=cos^2(u) (using the trigonometric identity sin^2(x)+cos^2(x)=1). Therefore, x=cos(u).

If we sub these results into the original integral we get

∫3cos(u)/√sin^2(u)

Before we can solve this we also need to change the dx at the end of the equation to a du.

We calculate dx/du=-sin(u).

Therefore, we can rewrite the integral as:

∫3cos(u)/sin(u)*(-sin(u))du.

Cancelling out both sin(u)'s, we get:

∫-3cos(u)du = -3sin(u) + C

Now we need to write the solution in terms of x:

Remember that 1-x^2=sin^2(u), therefore sin(u)=√(1-x^2).

So the solution is -3√(1-x^2)+C.

AO
Answered by Alma O. Maths tutor

8021 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the intersection point/s of the equations x²+7x-3 and 3x+4


Solve the equation log(1-x) - log(x) = 1 where log() is the logarithmic function, base 10.


Let f(x)= x^2+4, and g(x)= 3x; Find g(f(1))


Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning