Answers>Maths>IB>Article

Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.

Consider the Left-Hand-Side (LHS) of the equation first. LHS: 1/2 + 1 + 2 + 2^2 + ... + 2^10. We identify this as a geometric series by noticing that dividing any term u_(n+1) by the preceding term n the result is 2, eg. 1/(1/2) = 2. We also note that there are 12 terms, and that the first term is 1/2. From the formula booklet, section 1.1, we can find an equation for the sum of a finite geometric series: S_n = u_1(1-r^n)/(1-r). Where u_1 is the first term, r is the ratio of successive terms (u_(k+1))/u_k and n is the number of terms. In our case these take the values: u_1 = 1/2 , r = 2 , and n = 12. Substituting these in the equation we have : S_12 = 1/2(1 - 2^12)/(1 - 2) = 1/2(2^12 - 1) = 12^11 - 1/2 We can compare this last result for S_12 with the RHS of the original equation RHS: a2^b + c, to find a = 1, b = 11, and c = -1/2.

CM
Answered by Carlo M. Maths tutor

3825 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


Given that y = arcos(x/2) find dy/dx of arccos(x/2) and hence find the integral from 0 to 1 of arcos(x/2)dx


If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences