Answers>Maths>IB>Article

Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.

This question is asking to find the values for x, such that h(x) is strictly less than g(x). We can write this as 9^x + 9 < 103^x and solve for x as follows. 9^x + 9 < 103^x => 3^(2x) - 103^x + 9 < 0 We let t = 3^x : => t^2 - 10t + 9 < 0 => (t - 9)(t - 1) < 0 By either sketching the quadratic, or by a sign diagram we find the values of t that satisfy this inequality : 1 < t < 9. By substituting t = 3^x again, we find : 1 < 3^x < 9 => 3^0 < 3^x < 3^2 => 0 < x < 2.

CM
Answered by Carlo M. Maths tutor

3540 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Differentiation from first principles


A team of four is chosen from six married couples. If a husband and wife cannot both be on the team, in how many ways can the team be formed?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences