Answers>Maths>IB>Article

Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.

This question is asking to find the values for x, such that h(x) is strictly less than g(x). We can write this as 9^x + 9 < 103^x and solve for x as follows. 9^x + 9 < 103^x => 3^(2x) - 103^x + 9 < 0 We let t = 3^x : => t^2 - 10t + 9 < 0 => (t - 9)(t - 1) < 0 By either sketching the quadratic, or by a sign diagram we find the values of t that satisfy this inequality : 1 < t < 9. By substituting t = 3^x again, we find : 1 < 3^x < 9 => 3^0 < 3^x < 3^2 => 0 < x < 2.

CM
Answered by Carlo M. Maths tutor

3475 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


a) Let u=(2,3,-1) and w=(3,-1,p). Given that u is perpendicular to w, find the value of p. b)Let v=(1,q,5). Given that modulus v = sqrt(42), find the possible values of q.


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


Given f(x)=(x^3-7)*(x+4)^5, find the term x^3 of f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences