Answers>Maths>IB>Article

Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.

This question is asking to find the values for x, such that h(x) is strictly less than g(x). We can write this as 9^x + 9 < 103^x and solve for x as follows. 9^x + 9 < 103^x => 3^(2x) - 103^x + 9 < 0 We let t = 3^x : => t^2 - 10t + 9 < 0 => (t - 9)(t - 1) < 0 By either sketching the quadratic, or by a sign diagram we find the values of t that satisfy this inequality : 1 < t < 9. By substituting t = 3^x again, we find : 1 < 3^x < 9 => 3^0 < 3^x < 3^2 => 0 < x < 2.

CM
Answered by Carlo M. Maths tutor

3664 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


How would you find the Max and Min points on a graph?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning