Answers>Maths>IB>Article

Differentiate x^3 + y^4 = 34 using implicit differentiation

An implicity function is one that is not expressed in the form y = f(x) such as the equation in the question. Instead of rearranging the equation to make y the subject, the equation can be differentiated using a technique called implicity differentiation. This involves differentiating each term on both sides of the equation. Differentiating x^3 will give 3x^2 and differentiating 34 will give 0. However differentiating y^4 will give (4y^3) X (dy/dx). This is achieved by using the chaing rule whereby d(y^4)/dx = (d(y^4)/dy) X (dy/dx).

OM
Answered by Olavo M. Maths tutor

2314 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Differentiate implicitly with respect to x the equation x^3*y^5+3x=8y^3+1


Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2


How to prove that Integral S 1/(a^2+x^2) dx= 1/a arctan(x/a) + C ?


Prove that (sinx)^2 + (cosx)^2 = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning