Answers>Maths>IB>Article

Differentiate x^3 + y^4 = 34 using implicit differentiation

An implicity function is one that is not expressed in the form y = f(x) such as the equation in the question. Instead of rearranging the equation to make y the subject, the equation can be differentiated using a technique called implicity differentiation. This involves differentiating each term on both sides of the equation. Differentiating x^3 will give 3x^2 and differentiating 34 will give 0. However differentiating y^4 will give (4y^3) X (dy/dx). This is achieved by using the chaing rule whereby d(y^4)/dx = (d(y^4)/dy) X (dy/dx).

OM
Answered by Olavo M. Maths tutor

2228 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Differentiation from first principles


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


The velocity, v, of a moving body at time t is given by v = 50 - 10t. A) Find its acceleration. B) The initial displacement, s, is 40 meters. Find an expression for s in terms of t.


Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences