A Car of mass 1000kg applies a constant 200N breaking force over a distance of 30m and comes to a complete stop. How fast was the car going the instant the brakes were engaged.

Before we start we should have some idea of the route of our solution. We should observe that force, distance and work have a relation and that mass, velocity and work have a relation. So we should calculate the work done by the brakes stopping the car. W=FD so W = 20030=6000J We know work = change in energy and that the final energy is 0. So we now know that the starting energy of the car KE = 6000J We now look to the kinetic energy equation that states KE = 1/2 * m * v^2 solving for v we have v=sqrt(2KE/m) we now just plug in v = sqrt(26000/1000) = sqrt(12) = 3.46 ms^-1

SO
Answered by Sean O. Physics tutor

3569 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

define 1 volt


What is the resistance (in Ohms) of two 20 Ohm resisters in parallel?


If a ball is thrown at a velocity of 5m/s, what height does it reach?


An electric whisk in a bakery has two motors, each with an average power of 1500W. The whisk is used for 4 hours each day, 7 days a week. Electricity costs 18p per kilowatt-hour. Calculate the cost of the electricity used by the whisk in one week.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning