Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.

Let f(x)=x^n+a_(n-1)x^(n-1)+...+a_0 with n>=2 and a_i an integer have a rational root x=p/q.

Consider q^(n-1)f(p/q).

q^(n-1)f(p/q)=p^n/q+a_(n-1)p^(n-1)+...+a_0q^(n-1)=0

==> a_(n-1)p^(n-1)+...+a_0q^(n-1)=-p^n/q

The LHS of this equation is a sum of integers. Thus it is also an integer. Thus the RHS must be an integer, so p/q is an integer.

Consider x^n-5x+7=0.

We now know that is this has a rational root, then it has an integral root. But if it has a root in the integers, it must have a root modulo 2.

Consider x^n-5x+7=0 mod 2.

If x=0 mod 2, then x^n-5x+7=0-0+1=1 mod 2. If x=1 mod 2, then x^n-5x+7=1-1+1=1 mod 2.

Hence, either way there are no solutions as the LHS is always odd and the RHS is even.

Thus x^n-5x+7=0 has no rational solutions.

Answered by Peter A. STEP tutor

4843 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

What do integrals and derivatives actually do/mean?


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.


Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy