Find the modulus-argument form of the complex number z=(5√ 3 - 5i)

The easiest way to complete questions of these types is to first sketch an Argand diagram. With 5√ 3 on the x (real) axis and -5 on the y (imaginary) axis, the modulus would be calculated simply by using pythagoras's theorem. Thus, the modulus of z would be equal to √((5√3)² + 5²) = √(75+25) = √100 = 10. The argument is then found as the angle between the real axis and the vector of the complex number. This can once again be calculated with trigonometry. As we know the magnitude of all three edges of the triangle, any of sin cos and tan operations can be used. In this example, i will compute it using tan. thus, tan(θ)=opp/adj = Imimaginary/real components = -5/(5√3) therefore arg(z)=arctan(-1/√3), which gives a value of -30° or -π/6 once we have both the modulus and the argument of the complex number, expressing it in modulus-argument form is straightforward. the complex number z= |z|((cos(arg(z) + isin(arg(z))) = 10(cos(-π/6) + isin(-π/6) ).

CP
Answered by Chris P. Further Mathematics tutor

24332 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


MEI (OCR) M4 June 2006 Q3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning