Answers>Maths>IB>Article

Talk about the relation between differentiability and continuity on a real function and its derivative.

In a real 2-Dimensional function f(x) on the X-Y plane, we have the following relations between these concepts: i) f'(x) is continuous if and only f(x) is differentiable; in fact, the continuity of f'(x) ensures that there are no points where the derivative tends to infinity, or has a possible multiple value. (picture as additional explanation) ii) f(x) differentiable does not imply f(x) continuous, since we may have a function that is shifted up at a certain point, so it keeps to be differentiable, since there is no double derivative at that point, but the limits of x that tends to that point are different. (picture that function using a grapher) iii) f(x) continuous does not imply f(x) differentiable. In fact a simple counter example could be f(x)=|x|. At x=0, f(x) is continuous, checkable using the definition. But the derivative assumes a double value at x=0, f'(0)=1 and f'(0)=-1. Therefore we found a counter-example.

MM
Answered by Michelangelo M. Maths tutor

2060 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Can you explain the approach to solving IB maths induction questions?


Let f (x) = 5x and g(x) = x2 + 1 , for x ∈  . (a) Find f-1(x) . (b) Find ( f ° g) (7) .


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


How do you integrate by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences