Top answers

Maths
A Level

The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0

Start by differentiating x2 – 3xy – 4y2 + 64 = 0 with respect to x to obtain an equation in x, y and dy/dx:
2x – 3y – 3x.dy/dx – 8y.dy/dx = 0 [use the product rule to differe...

FB
Answered by Felix B. Maths tutor
12258 Views

Find the indefinite integral of sin(x)*e^x

As we are integrating, we must decide which method to use. As the integrand is of the form f(x)*g(x), integration by parts seems to make sense. Firstly, let L = INT(sin(x)*e^x). So we want to find L - thi...

CJ
Answered by Christopher J. Maths tutor
3153 Views

Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .

Starting with: 2tanθsinθ = 4 - 3cosθ . We can rewrite tanθ in terms of sinθ and cosθ.We know: tanθ = sinθ ÷ cosθ .By substituting we get: 2(sinθ ÷ cosθ)sinθ = 4 - 3cosθ .Let's multiply out by cosθ to get:...

HS
Answered by Henry S. Maths tutor
4910 Views

Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3

9sin(x) + 12 cos(x) = Rsin(x+y) =R(sin(x)cos(y)+cos(x)sin(y))= (Rcos(y))sin(x) + (Rsin(y))cos(x)Therefore by matching the coefficientsRsin(y)=12, Rcos(y)=9 [1]SoRsin(y)/Rcos(y) = 12/9 = 4/3, therefore tan...

JH
Answered by James H. Maths tutor
5369 Views

g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6

0 = ex-1+ x - 6 ex-1 = 6-x x-1 = ln (6-x) -> here we have taken the natural log of both sides, but it only shows on one side as the natural log of e is 1.x = ln (6-x) + 1Question ...

SN
Answered by Sumrah N. Maths tutor
6620 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences