u=x2 + 3
du/dx=2x
dx=du/2x
2x/(x2+3) dx becomes (2x/u) * (du/2x)
the 2x terms cancel out giving 1/u du
this integrates to ln(u)+c becoming ln(x
x=2sin(t), y=1+cos(2t)
a) By chain rule, dy/dx = (dy/dt)/(dx/dt)
dy/dt = -2sin(2t), dx/dt= 2cos(t)
dy/dx= -sin(2t)/cos(t)
dy/dx=-2sin(t)cos(t)/cos(t)
dy/dx=-2sin(t)