Top answers

Maths
A Level

Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).

This is a question taken from a core 4 paper and is a typical example of a differential equation question.

The first thing to notice about this equation is that it is "separable"...

DD
Answered by Dominic D. Maths tutor
11449 Views

Differentiate The Following function

Find dy/dx where y = (x2+7)1/2
=> 1/2(x2+7)-1/2 * d/dx(x2+7)  By the chain rule
=> 1/2(x2+7)-1/2 * 2x
=>...

KM
Answered by Kerr M. Maths tutor
6914 Views

What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?

To work out the gradient of a function f(x), we need to differentiate it with respect to x, to give us f'(x). If x = a at a point, then the gradient of f(x) at that point is f'(a) (substitute a in plac...

JJ
Answered by Jake J. Maths tutor
10895 Views

If n is an integer such that n>1 and f(x)=(sin(n*x))^n, what is f'(x)?

Let us denote sin(nx) = u(x), where u is a function of x. The equation is now therefore f(x) =(u(x))^n.

For simplicity, we will write that as f(x) = u^n

By the chain rule, w...

NT
Answered by Noam T. Maths tutor
4477 Views

What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?

First simplify the expression; 3x^(2)-3 to get;

[(x+1)/3(x^(2)-1)] - [1/(3x+1)] 

Using the fact that x^(2)-1 is the difference of two squares, we can simplify it to;

...
FO
9863 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences