Top answers

Maths
A Level

Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.

To find the value of R, use Pythagoras's Theorem using the coeffecients of cos θ and sin θ. The correct answer should be R=5. Expand the expression  R cos(θ – α). Equate the expanded expression with 3 cos...

AG
Answered by Anahita G. Maths tutor
21792 Views

How do I use the product rule for differentiation?

The product rule is a rule for differentiating products of expressions, i.e. 2 expressions multiplied together. 

The rule is: if y=AB, then dy/dx=AdB/dx +B*dA/dx. This can be rem...

TE
Answered by Thomas E. Maths tutor
7446 Views

How do I evaluate composite functions?

Suppose you have 2 functions: f(x) = 3x2, g(x) = log3(x). These are arbitrary, any functions would work. Evaluate f(g(x)): let y = log3(x) ( = g(x) ), then f(g(x)) = f(...

SG
Answered by Seb G. Maths tutor
3984 Views

How do I differentiate implicitly?

The most important thing to remember when differentiating implicitly is that y is a function of x. Rewriting y as y(x) often makes it much clearer. For example, evaluate d/dx (y2): using the...

SG
Answered by Seb G. Maths tutor
4283 Views

A cup of coffee is cooling down in a room following the equation x = 15 + 70e^(-t/40). Find the rate at which the temperature is decreasing when the coffee cools to 60°C.

First, we need to find the value of t when x = 6p°C. We are told that after t minutes the temperature, x, will be 60°C; so we can insert 60 into the equation for x: 

60 = 15 + 70e^(-t/40)...

NA
Answered by Nathan A. Maths tutor
10733 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences