Top answers

Maths
A Level

Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points

Stationary points are points where the gradient of a function is equal to 0. In this question the product rule can be used to find the gradient of the given function. The product rule is given by u'v+uv'...

JR
Answered by Joe R. Maths tutor
3038 Views

Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)

(1 mark) Differentiate equation in the question: 4x3+8x2-4x-8(1 mark) Equate this to zero: (x-1)(x+1)(x+2)=0(1 mark) Find turning points (roots of above equation): x=1,-1,-2(1 mark) ...

EB
Answered by Elizabeth B. Maths tutor
3073 Views

show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.

Stationary points are found by considering the points at which the gradient of the function equal zero. For the above, you need to employ the quotient rule, since both numerator and denominator are f(x), ...

RM
Answered by Rob M. Maths tutor
4667 Views

A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?

Set out information given in question, and taking the upward direction to be positive: s (displacement) = ?, u (initial speed) = 21ms-1, v (final speed at maximum height) = 0ms-1, a ...

SS
Answered by Shruti S. Maths tutor
7978 Views

Let C : x^2-4x+2k be a parabola, with vertex m. By taking derivatives or otherwise discuss, as k varies, the coordinates of m and, accordingly, the number of solutions of the equation x^2-4x+2k=0. Illustrate your work with graphs

Write y=x2-4x+2k. And m:= (xm, ym) for the coordinates of our vertex. We deduce that x is exactly the value of x for which y'=2x-4=0, because m is a minimum p...

MV
2738 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences