Top answers

Maths
A Level

Find the stationary points of the function f(x) = x^3+6x^2+2 and determine if they are local maximums or minimums.

A stationary point is defined as a point on the function where the gradient is zero, i.e f'(x) = 0. To construct this equation we must differentiate the function, we would find f'...

LS
Answered by Luke S. Maths tutor
4589 Views

Calculate the derivative of x^x

This problem is best solved using implicit differentiation and by tackling each side of the equation individually. First write down the problem as "y = x^x". Recalling that log rules can be used...

GH
Answered by George H. Maths tutor
3380 Views

How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression ...

ZG
Answered by Zachary G. Maths tutor
8411 Views

two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u

ball A has mass m and velocity u. ball B has mass 2 m and velocity 2uby conservation of momentum:mu - 4mu = mv + 2mx (1)where v is the velocity of ball A and x is the velocity of ball B after collision.by...

WA
Answered by William A. Maths tutor
2991 Views

Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/d...

UW
Answered by Urszula W. Maths tutor
3727 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences