Top answers

Maths
A Level

Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]

First, we use the trig identities: cos2x=cos^2x-sin^2x, cos^2x+sin^2x=1 and sin2x=2sinxcosx to transform the integral to ∫(cos2x)/(1+sin2x)dx.
We know that ∫f'(x)/f(x)dx = ln|f(x)|+c, so we let f(x)=...

AC
Answered by Abby C. Maths tutor
15306 Views

(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C

First, multiply throughout by the denominator of the main function to give as follows: 4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1) Then, choose values of x which will cause two of the constants to va...

MC
Answered by Michael C. Maths tutor
14002 Views

Edexcel C1 2015 Q10. A curve with equation y = f (x) passes through the point (4, 9). Given that f′(x)=3x^(1/2)-9/(4x^(1/2))+2. Find f(x), giving each term in its simplest form.

I would go through a similar example of integration with the student using the whiteboard and would explain the use of integration, and would then get them to do the above question, giving them hints when...

IA
Answered by Issy A. Maths tutor
10203 Views

Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitut...

AT
Answered by Alexander T. Maths tutor
16518 Views

The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

Using Binomial expansion or Pascal's triangle, expand (1+x)^4 to get 1+4x+6x^2+4x^3+x^4. Then, by substituting √y for x, get 1 + 4y^1/2 + 6y +4y^3/2 +y^2. Then, using the rules of integration, the expansi...

TD
Answered by Tutor41123 D. Maths tutor
6381 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning