Top answers

Maths
All levels

How can you integrate ln(x) with respect to x?

We can use substitution for this one. Take y=ln(x) to be equal to y= 1 x ln(x)Set u=ln(x) and dv/dx=1Compute du/dx and v:du/dx=1/x and v=xUse given formula - ∫ udv/dx dx = uv - ∫ vdu/dx dx= xln(x) - ∫ x/x...

SH
Answered by Samuel H. Maths tutor
3107 Views

What is the pythagoras theorem?

a2=b2+c2

AF
Answered by Anwen F. Maths tutor
2669 Views

Differentiate the following with respect to x: e^(10x) + ln(6x+2)

We can differentiate the terms separately:
The first term e10x can be differentiated using the chain rule.
Let u = 10xWe can differe...

ML
Answered by Meher L. Maths tutor
3829 Views

integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can the...

JT
Answered by Jim T. Maths tutor
9256 Views

The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?

Use the chain rule to differentiate the original equation: this results in 8x-3y^2*(dy/dx) + 2ln(3)3^2x=0. This can be rearranged to find dy/dx as a function of y and x: 3y^2(dy/dx)=8x+2ln(3)*3^2...

TD
Answered by Tutor65063 D. Maths tutor
3149 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning