Top answers

Maths
All levels

Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.

First of all instead ,we'll define the chain rule , thus y can be rewritten as y = f (g(x)) , where f(x) = exp (x) and g(x) = cos^2(x) + sin^2(x). Therefore let y = f(u) , dy/dx = dy/du * du/dx , which ...

AJ
Answered by Ayman J. Maths tutor
4092 Views

The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.

To find the x coordinate of point P, we simply substitute in the value of y at P into the equation of the curve and solve for x = 4pi^2. (ii) To start, we can differentiate x with respect to y, by using t...

TF
Answered by Tobias F. Maths tutor
14149 Views

Solve the following simultaneous equations: 2x - y = 7 and x^2 + y^2 = 34

First, clearly write the two equations above one another, and label them (1) and (2). Rearrange the linear equation (the one with no squared variables) to make y the subject of the equation. You should ge...

TF
Answered by Tobias F. Maths tutor
19823 Views

What other A Level subjects would be useful towards applying to do a Mathematics degree?

To compliment Mathematics, Further Mathematics would be an ideal subject to take. It is not essential, however the additional practice would benefit your understanding of Mathematics, easing you into even...

VF
Answered by Vene F. Maths tutor
3415 Views

The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.

First we must find the y coordinate of the point P: We know the x-coordinate is x1=1 so the y coordinate must satisfy the equation y1=f(1) which gives y1=-7. So we now know P is at (1,-7).

We now n...

KH
Answered by Kieran H. Maths tutor
10526 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning