Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]

First, we use the trig identities: cos2x=cos^2x-sin^2x, cos^2x+sin^2x=1 and sin2x=2sinxcosx to transform the integral to ∫(cos2x)/(1+sin2x)dx.
We know that ∫f'(x)/f(x)dx = ln|f(x)|+c, so we let f(x)=1+sin2x. f'(x) can then be found by differentiating f(x), so f'(x) = 2cos2x.
So we multiply top and bottom of the fraction by 2, and take out a factor of 1/2 to express the integral as: (1/2)∫(2cos2x)/(1+sin2x)dx, which can be integrated using the above rule to get (1/2)ln|1+sin2x|+ c.
We then substitute the limits given, to get (1/2)ln(1+1)-(1/2)ln(1+0) = (1/2)ln(2).

AC
Answered by Abby C. Maths tutor

14893 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I recognise when to use a particular method for finding an integral?


Use the quotient rule to differentiate: ln(3x)/(e^4x) with respect to x.


Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences