Differentiate with respect to x: y=xln(x)

Recall the product rule for differentiation. If y=uv, where u and v are functions defined by functions of x, then we can take the derivative of y as: y'=u'v+v'u () (where ' denotes the derivative) Applying this rule to our example: y=xlnx. Then we can denote u=x, v=ln(x) Hence: u'=1 v'=1/x Applying (), we have u'v=ln(x) , v'u=1 Giving y'=ln(x)+1

GP
Answered by George P. Maths tutor

6335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the stationary points on a curve?


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


Find the turning points of the curve (x^3)/3 + x^2 -8x + 5


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning