Differentiate with respect to x: y=xln(x)

Recall the product rule for differentiation. If y=uv, where u and v are functions defined by functions of x, then we can take the derivative of y as: y'=u'v+v'u () (where ' denotes the derivative) Applying this rule to our example: y=xlnx. Then we can denote u=x, v=ln(x) Hence: u'=1 v'=1/x Applying (), we have u'v=ln(x) , v'u=1 Giving y'=ln(x)+1

GP
Answered by George P. Maths tutor

6580 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you show me why the integral of 1/x is the natural log of x?


How do I find the area under a curve between two points?


Find the stationary points on the curve y = x^3 + 3x^2 - 9x - 4


How can you integrate the function (5x - 1)/(x^(3)-x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning