If a and b are the roots of the quadric polynomial 2x^2+6x+7 what are a+b and ab?

The phrase "a and b are roots of 2x^2+6x+7" is just a way of saying that x=a and x=b solve the equation 2x^2+6x+7=0. Check out that by diving by 2 on both sides of this equation we get that that x=a and x=b solve x^2+3x+3.5=0. So a and b are roots of the polynomial x^2+3x+3.5, which has leading coefficient 1. Therefore it can be written as x^2+3x+3.5=(x-a)(x-b)=x^2-(a+b)x+ab. Equating coefficients of same degree: a+b=-3 ab=3.5

GC
Answered by Guillermo C. Maths tutor

3334 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

For the equation, 5(7x + 8) + 3(2x + b) ≡ ax + 13. Find the values of a and b. You may use a calculator.


If a rectangle has area 48cm2 and sides length 6cm and (3x+2)cm, what is the value of x?


Write 16*8^2x as a power of 2 in terms of x.


Expand and simplify: 5(x + 3) - 3(y - 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning