Answers>Maths>IB>Article

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.

The equations for an arithmetic sequences are 1) Un = u1 + (n - 1)d 2) Sn = n/2(2*u1 + (n-1)d) 3) Sn = n/2(u1 + un)

The first step is to calculate the common difference, d. This is done using the first equation Un = u1 + (n - 1)d. We use the fourth term to calculate calculate d:

12.5 = u1 + 3d 27.5 = u1 +9d 15 = 6d d =15/6 d = 2.5

Therefore u1 = 5

For S20 we use the second equation Sn = n/2(2*u1 + (n-1)d).

S20 = 20/2 * (2(5) + (20-1)2.5) = 10 * (10 + 47.5) = 575

NK
Answered by Ndalukile K. Maths tutor

2781 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


Let f(x)=x^2-ax+a-1 and g(x)=x-5. The graphs of f and g intersect at one distinct point. Find the possible values of a.


Consider the arithmetic sequence 2, 5, 8, 11, ... a) Find U101 b) Find the value of n so that Un = 152


y = e^(e^x). Show that the curve has no maxima or minima for any real number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning