Solve the following set of simultaneous equations: 3x + 2y = 15 & 9x + 4y = 1

  1. Label your equations 1 and 2.
  2. Look to eliminate one of your variables to create a third equation with only one variable.
  3. To do this multiply the first equation by 2 to obtain: 6x + 4y =30 *Label as equation 3
  4. Now both equation 2 and 3 contain the term 4y, which means we are now able to eliminate y from the set of equations.
  5. Subtract equation 3 from equation 1 to obtain -3x = 29.
  6. Rearrange to find the value of x by diving both sides my -3, resulting in x = -29/3.
  7. We have now found our x value. With this new information, we can input the x value into any of our 3 equations to obtain our y value. *Best to choose an equation which hasn't been manipulated
  8. Substituting into equation 1 and rearranging we obtain y = 22.
  9. We have now found the solutions which satisfy both our original equations. x = -29/3 & y = 22. *Check they are correct by substituting both values into one of the equations.
CA
Answered by Chris A. Maths tutor

6236 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that √2 is irrational


How do I know when to use Sine, Cosine and Tangent


I have a bag with 4 different coloured marbles. Blue, green, red, and orange. I have 2x,7,7x + 5,4x -3 of each coloured marble respectively. If the probability of a green marble being picked is 7/100, find the probability of an orange marble being picked.


Complete this substitution question: x^​3 - 25 = 103 - x^​3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning