Find the gradient of y=6x^3+2x^2 at (1,1)

In order to find the gradient of the curve at (1,1), we must first differentiate the equation of the curve. To do this, multiply the coefficient of x by the power of that same x. Then subtract one from the power. (d/dx)(6x^3)=(36)x^(3-1)=18x^2. While (d/dx)(2x^2)=(22)x^(2-1)=4x. Therefore, the derivative of the equation is (dy/dx)=18x^2+4x.

To find the gradient of the equation at (1,1), substitute x=1 into the derivative. 18(1)^2+4(1)=22. So the gradient of y=6x^3+2x^2 at (1,1) is 22.

N.B. In tutorials I will use a whiteboard for my workings.

BB
Answered by Ben B. Maths tutor

5378 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning