Find the derivative of f(x)=x^2*e^x+x

You can split the derivative into 2 parts: dx/dy (x^2*e^x) + dx/dy (x)

For the first part you have to use the product rule, so let U=x^2 V=e^x U'=2x V'=Chain rule

V'=dx/dy(e^x)dx/dy(x)=e^x1=e^x

Returning to the product rule, f'(x)=U'V+UV' So, (2xe^x)+(x^2e^x) =x(x+2)e^x

Second part is dx/dy(x)=1

Final answer =x(x+2)e^x+1

BR
Answered by Benedict R. Maths tutor

3420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate Y = 4X/(X^2+5) and give dy/dx in its simplest form


Calculate (7-i*sqrt(6))*(13+i*sqrt(6))


How do you find the x co-ordinates of the stationary points of a curve with the equation y = 10x - 2x^2 - 2x^3


Express '6cos(2x) +sin(x)' in terms of sin(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences