How could I sketch a graph of y=2x^3-3x^2?

To sketch a graph of an equation, there are several key features to consider. Firstly, we can consider where the graph crosses the x- and y-axes. When x=0, y=0, so the graph goes through the origin. If y=0, x=0 is possible, but as y=x^2(2x-3), we could also have x=3/2.
This tells us where the graph crosses the axes, so now we can ask where its stationary points are. We can find that the derivative of y is 6x^2-6x, and this is equal to zero when x=0 or x=1. To find out how the function behaves in general, think about what would happen if x is very large: x^3 will get much bigger than x^2, as it has an extra factor of x, and so for very large x, y is large and positive. This gives us enough information to find the shape of the graph.
We have found two turning points, and a cubic cannot have more than two turning points, and so we can tell from this which direction the graph will go between the turning points, and then sketch the graph.

LH
Answered by Lawrence H. Maths tutor

12044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle of mass M is being suspended by two ropes from a horizontal ceiling. Rope A has a tension of 15N at 30 deg and rope B has a tension of xN at 45 deg, find M assuming the particle remains stationary.


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


The curve C has equation: (x-y)^2 = 6x +5y -4. Use Implicit differentiation to find dy/dx in terms of x and y. The point B with coordinates (4, 2) lies on C. The normal to C at B meets the x-axis at point A. Find the x-coordinate of A.


Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning