Write y = x^2 + 4x + 6 in the form y = (x + a)^2 + b. What is the minimum value of y?

This is an example of completing the square. Notice that when we expand y = (x + a)^2 + b we get y = x^2 + 2ax + a^2 + b. By comparing coefficients (ie, making sure the number x is multiplied by and the constants are the same on both sides), we can see that: 2a = 4, a^2 + b = 6. Solving the simultaneous equations: 2a = 4 -> a = 2, a^2 + b = 6 -> 2^2 + b = 6 -> b = 2, So y = (x + 2)^2 + 2. As the square of a number is never less than 0, the minimum of y is when (x + 2)^2 = 0, ie y = 0 + 2 = 2.

NS
Answered by Naomi S. Maths tutor

7770 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve x^2 = 4(x - 3)^2


How do you rationalise surds?


Rob has a bag with white, black and blue counters. There are twice as many blue counters than there are white. A qaurter of all the counters are black. If there are 5 white counters, how many counters are in the bag.


Find the points where the curve given by: y = x^2 - 4x -12, and the line given by y = 2x - 12


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning