Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2

To be able to solve this, the equation needs to be integrated. To do this, simple integration needs to be applied where the power of 'x' increases by 1 and the coefficient of 'x' is divided by the new power. The equation below is equal to that given in the question y = 4(x^3) + 9(x^2) - 2(x^1) + 7(x^0). This makes it more clear how the integration is carried out to give x^4 + 3(x^3) - x^2 + 7x. To find the area, the new equation needs to be solved by substituting in the limits, therefore x=2 and x=0. For x=2, ((2)^4) + 3((2)^3) - (2)^2 + 7(2) = 16 + 24 - 4 + 14 = 50 For x=0, ((0)^4) + 3((0)^3) - (0)^2 + 7(0) = 0. To find the area, the value for the equation in which the lower limit of x was substituted(therefore 0) needs to be subtracted from the one with the higher limit(therefore 2). Hence the area is given by: area = 50 - 0 = 50 square units.

YS
Answered by Yash S. Maths tutor

4585 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate (3x)e^(3x)


differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x


Express x^2-4x+9 in the form (x-p)^2+q where p and q are integers


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences