Solve the following fractional quadratic equation 14/(x^2-9)+1/(3-x)+(4-x)/(x+3)=7/(x+3), assuming x=/=+-3.

The first step is to find a common denominator. Since x^2-9 can be expanded to (x-3)(x+3) and 1/(3-x) can be written as -1/(x-3), we can see that all the terms contain either (x-3), (x+3), or both. Therefore the common denominator is the product of these two. Now we can rewrite the equation as follows: [14–(x+3)+(4-x)(x-3)]/(x-3)(x+3)=7(x-3)/(x-3)(x+3) Then we multiply both sides of the equation by the denominator, so we are left with the numerators only. 14-(x-3)+(4-x)(x-3)=7(x-3) The next step is to remove the brackets. 14-x+3+4x-x^2-12+3x=7x-21 Adding up the homogeneous expressions, we get: -x^2+6x-1=7x-21 -x^2-x+20=0 We can multiply this by (-1) if we want a nicer equation, or solve it straight away using the quadratic formula. The solution will be the same either case. As it is a quadratic equation, we always get 2 answers. These are x1=4 and x2=-5 here.

EH
Answered by Evelin H. Maths tutor

7917 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1


Solve the simultaneous equation 6x + 2y = -3, 4x - 3y =11


Point A has coordinates (-1,3). Point B has coordinates (2,-3). Find the equation of the line L that goes through these two points. Point C has coordinates (0,1). Hence or otherwise, find the equation of the line perpendicular to L that goes through C.


Write x/(x-1) - x/(x+1) as a single fraction in its simplest form (Edexcel GCSE 2016)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning