Differentiate: 2(x^2+2)^3

This is a chain rule question. Unlike in ordinary differentiation we have more than just the single term 'x' with coefficient 1 raised to the power of something. e.g. x^3 Therefore, there is more steps. We can rewrite the question as 2u^3 with u=x^2+2 as this is more familiar. You can then do the differentiation in terms of u which gives you 6u^2. Now, the extra step is that we have to also differentiate the u and then multiply this by our other answer. Differentiating u gives us 2x which then multiplied by 6u^2 gives us 12x(u^2) Finally, we can now sub back in u=x^2+2 to make sure our final answer is in terms of one variable only. Therefore our final answer is, 12x((x^2+2)^2)

CA
Answered by Charlotte A. Maths tutor

3065 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the integral ∫(sin3x)(cos3x)dx (C4 Integration)


If y = 5x^3 - 2x^2 + 2, what is dy/dx?


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning