Factorise and solve x^2 - 8x + 15 = 0.

The easiest method to solve quadratic equations by hand is by factorisation - which means putting the equation into brackets, effectively expressing the equation as a product of two linear expressions. Imagine the brackets are in the form (x+a)(x+b), so when expanded would equal x^2+ax+bx+ab. This shows us that whatever a and b are, they must multiply to make 15 and sum to -8. Now consider the integer factors of 15 (although a and b are not always integers). We have 15 and 1, -15 and -1, 5 and 3, and -5 and -3 (because negative multiplied by negative makes positive). If we sum all the possibilities we can see that -5 and -3 sum to -8, as required, so we therefore have our a and b, a=-3 and b=-5. If you are unsure, substitute these values into the (x+a)(x+b) equation and expand to see if you end up with the same equation. We now have our factorised equation: (x-3)(x-5)=0. It is clear that for two numbers to multiply to make zero, one of the numbers must be zero, so we have the option - either (x-3)=0 or (x-5)=0. We now solve for x, giving x=5 or x=3, as quadratic equations usually have two roots, so this is our final answer.

RB
Answered by Rachel B. Maths tutor

4371 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Lewis wins £360 in a prize draw. He gives 15% to charity and puts 3/8 into his savings. The rest he uses to buy a bike. How much of the money has Lewis got left for this bike? Note: do not use a calculator


If f(x)=8x-3, what is the inverse function?


Draw a graph and clearly label any x and y intercepts for the equation y=x^2+6x+9


A box contains 7 caramel doughnuts. They have masses of 56 g, 67 g, 45 g, 56 g, 58 g, 49 g and 50 g. Find the median, mean and mode values of these masses. Bonus: What mass of doughnut could be added to the box to make the mean mass = 61 g.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning