Differentiate y=(x^2+5)^7

In this example instead of multiplying out 7 brackets it is useful to use the chain rule, which is used to differentiate the composition of more than one function. If we let what is inside the bracket equal u, then u=x^2+5, and y=u^7. The chain rule states that dy/dx=du/dxdy/du, so we simply differentiate both functions and multiply them: remembering that to differentiate x^n we do nx^(x-1), du/dx=2x (as constants disappear) and dy/du=7u^6. Therefore dy/dx=2x7u^6. Now all that is left is to plug the expression for u back in to get dy/dx=2x*7(x^2+5)^6, and simplify to get dy/dx=14x(x^2+5)^6. It is simplest to leave it in this form.

RB
Answered by Rachel B. Maths tutor

6467 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I implicitly differentiate and why does it work? (Assuming understanding of differentiation)


Differentiate the equation x^2 + 2y^2 = 4x


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning