Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.

We can identify xe^(-2x) as a product and hence we will most probably need to use integration by parts.

We then set u = x and v' = x^(-2x). It is important to do it this way round so that when we differentiate u we are left with u' = 1 which is what will make the second integral easier to solve.

Substitute these values into the formula for integration by parts being sure to be careful to avoid any sign errors. Finally substitute in the limits and you should get the answer of 0.25 - 0.75e^(-2)

TB
Answered by Tom B. Maths tutor

6756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is y' when y=3xsinx?


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


How do you find dy/dx for a set of parametric equations?


How to differentiate 2x^5-4x^3+x^2 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning