Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.

One can treat complex multiplication as polynomial multiplication, but remembering i^2 = -1. To perform polynomial multiplication, multiply each term one by one, then add them together. Hence (3+i)(1+2i) = 3x1 + 3x2i + ix1 + ix2i = 3 + 6i + i + 2 i^2 = 3 + 6 i + i + 2x(-1) = 3 + 6i + i - 2. Now collect like terms, so terms with i add together and the same with terms without i. This gives (3+i)(1+2i) = 1 + 7i. So a = 1, b = 7.

AS
Answered by Alvin S. Maths tutor

9767 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What qualifications and experience do you have at this level?


Differentiate y = 7(x)^2 + cos(x)sin(x)


Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).


differentiate with respect to x : y = x^2 -5x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning