Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

12412 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to factorise equations, or expand factorised equations?


Factorise 5x^2 + 20x


Solve x^2 = 4(x-3)^2


Solve the simultaneous equations: 2x - y = 1, 3x + y = 14


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning