Find the coordinates of the minimum point of the curve y=x^2+6x+5.

To answer this question is equivalent to minimising y=(x+3)^2-4. We have that all square numbers are greater than or equal to 0 so to minimise this equation, we require that (x+3)^2=0. This is satisfied only when x=-3. Then y=[(-3)+3]^2-4=-4. Our minimum point is therefore (-3,-4).

JI
Answered by Jonny I. Maths tutor

11556 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

1: x = 2, 2: y = x + 5 -> Solve this pair of simultaneous equations.


Factorise: x^2+2x-3


A bag has 3 red balls and 5 green balls. I take out 2 balls, without replacing them. What is the probability of choosing at least one red ball? Give your answer to 3 decimal places.


Fully expand (2x+4)(4x-3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences